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A Primer to Model Fit in Structural Equation Modeling

Researchers without extensive statistical training may find statistical methods such as

structural equation modeling daunting, to say the least. Despite the availability of numerous

methods of assessing model fit (or perhaps because of the proliferation of so many alternate

methods), researchers may have difficulty assessing their model's fit to their data due to the

conflicting nature of many assessment strategies. This paper is an attempt to highlight and

explain various methods to assess fit in structural equation models.

The growth of computers and computer technology helped make SEM possible, while the

theory behind SEM dates from before the 1960s, it didn't become a unified statistical procedure

until the introduction of LISREL created by Joreskog and Sorbom (1989). The primary purpose

of SEM is to test so-called causal theories by allowing factor analysis and multiple regression

type procedures to be performed simultaneously. In addition, constructs can be more readily

identified because of SEM' s ability to partial out measurement as part of the model. The

potential value of SEM, however, still relies on the following: the status of the hypothesis

relative to the theory, how well the constructs have been operationalized, and the "match"

between the hypothesis and the statistical procedure used to test it.

While statistical textbooks provide appropriate numerical criteria in order to evaluate

model fit they often fail to elaborate on the theory behind their creation, thus leaving researchers

to believe these cut-offs are to be strictly observed without understanding their importance. This

primer will address the theoretical background, optimal levels, strengths, weaknesses, and

additional considerations of the most frequently used SEM fit statistics in an effort to better

enable researchers to make informative judgements regarding their models.
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Overview of Fit Indices

Fit indices evaluate model fit for the data being examined. They help the researcher

determine which proposed model(s) best fit the data by showing how well the parameter

estimates account for the observed covariances. Models demonstrate two main types of fit:

overall fit and the local fit of individual parameters. Overall fit is evaluated by how well the

model explained all of the data in the entire analysis. Local fit is determined by examining how

specific parameters that are free for estimation may have achieved statistical significance within

the model. The chi-squared statistic (x2) is the generally recognized fit index for assessing

overall model fit. It tests the null hypothesis of no difference between the proposed model and

the data structure, and good-fitting models should retain the null hypothesis (i.e., the chi-squared

statistic should not be significant). However, several researchers over the years have criticized

the use of x2 because of its shortcomings, primarily that it is a statistical significance test and

as such is heavily impacted by sample size, making retention of the null for large sample

almost impossible. As a result of these criticisms, a number of additional fit indices have been

created. Chi-squared and these additional fit indices are described in more detail in the rest of

this paper.

Overall Fit

Overall model fit requires consideration of several indicators. Bollen and Long (1993)

argue that the first guide to measuring the adequacy of a particular model is strong substantive

theory. Empirically, however, model fit is evaluated with several indices that provide different

information. The three most widely-cited empirical criteria are: tests of the null hypothesis, tests

of absolute fit, and tests of incremental fit. While these three areas are the most common

empirical examinations of model fit, others have proposed other criteria (Tanaka, 1993). Given
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all the different types of model evaluations, it is important to evaluate model fit with multiple fit

indices to avoid making inaccurate assumptions of a model's fit to the data being examined.

Tests of the null hypothesis are assessed using a chi-squared statistic (Hu & Bentler,

1995). Because there are many chi-squared tests, however, it is important to know which statistic

is best to use. The maximum likelihood (ML) and generalized least squares (GLS) are the two

estimation theories most frequently used when determining the chi-squared statistics in most

SEM analyses. Both of these tests assume multivariate normality of the data (Henson, 1999; Hu

& Bentler, 1995).

Because the overall model test that is represented by the chi-squared statistic has a

number of difficulties associated with it (such as the aforementioned sample size problem),

researchers began to look at other means of assessing model fit (La Du & Tanaka, 1995). The

earliest explorations led to the development of what are currently termed "absolute fit indices."

Absolute fit indices employ as part of their computation the sample covariance matrix and the

estimated population matrix as derived from the model being tested. Often other elements, such

as degrees of freedom for the model tested, sample size, and/or the number of measured

variables in the model are also included in computing these indices. The two best known

absolute fit indices are the goodness of fit index (GFI) and adjusted goodness of fit index

(AGFI). While the chi-squared statistic can also be lumped into the absolute fit index category,

GFI and AGFI are more commonly discussed when talking about absolute fit.

Subsequent to the development of the absolute fit indices, other researchers developed

what are currently termed "incremental or relative fit indices." Incremental fit indices require not

only the two matrices used in absolute fit indices, but a third matrix as well. This third matrix is

used as an aid in assessing model fit. Several of these indices have been developed, but the most
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widely-used are: comparative fit index (CFI), normed fit index (NFI), and the relatively new root

mean square error of approximation (RMSEA).

Besides the fit indices discussed in this paper, other indices have also been created. While

some of these have dropped out of fashion or become subsumed in other fit indices (for example,

TLI, IFI, and BFI), others are still being used and have their adherents (such as RMR and RNI).

Given the ever-evolving nature of SEM analyses, it is likely that new methods of evaluating

model fit will continue to be explored and developed. In the meantime, the following indices are

likely to give beginning researchers a good place to start in evaluating their work.

Chi-Squared Test

Chi-squared is the conventional overall test of fit in structural equation modeling. The

chi-squared test enjoyed substantial popularity when it was first proposed as a means of testing

models (Joreskog, 1969), because it made confirmatory factor analysis free of the subjective

decisions that were being employed up until the use of the chi-squared statistic.

The chi-squared test assesses the magnitude of discrepancy between the sample and the

fitted covariance matrices. The chi-squared analysis of covariance matrices is at the heart of

SEM and explains why SEM has frequently been called "covariance structure analysis" or

"analysis of covariance matrix structures." Parameters in SEM are estimated so that the

discrepancy between the sample covariance matrix and the implied covariance matrix is

minimal. A statistically nonsignificant chi-squared result is considered optimal, which indicates

no statistical difference between the sample and model covariance matrices. The chi-squared

analysis is conducted using a t statistic. A large t statistic relative to the degrees of freedom

associated with the model indicates that the model may not be a good fit to the data. While there

are several different t statistics, the maximum likelihood (ML) and generalized least squares
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(GLS) estimation methods are the most widely employed summary statistics for assessing the

adequacy of a structural equation model. These methods assume normality of the data being

examined, however, and lose their robustness when this assumption is violated (Fan & Wang,

1998).

Historically, one of the key strengths of the chi-squared analysis in SEM is that it finally

gave researchers an objective way to assess model fit. Up until the proposal of the chi-squared

statistic, researchers evaluated exploratory models based upon factor analytic rotation methods

and subjective factor analysis techniques. Thus, chi-squared provided, for the first time, a means

of evaluating models with more objective criteria. Problems associated with the chi-squared tests

were recognized quite early, however. One of the main concerns of researchers is the chi-squared

test's susceptibility to sample size. With small sample sizes, the chi-squared test may lack power

and not be able to discriminate poor models from adequate ones. And, with larger sample sizes,

trivial differences between the implied and tested models may lead to a rejection of an adequate

model. Thus, the standard chi-squared may not be a good enough guide to model adequacy,

because a statistically significant chi-squared value may be the result of model misspecification,

the power of the test, or a violation of some technical assumptions underlying the estimation

method.

GFI & AGFI

The goodness of fit (GFI) and adjusted goodness of fit (AGFI) indices were developed by

Joreskog and &A-born (1984) as alternatives to the chi-squared statistic and its limitations. GFI

was the original fit index created for LISREL, the SEM computer program developed by

Joreskog and SOrbom. GFI and AGFI essentially compare the ability of a model to reproduce the

variance/covariance matrix to the ability of no model at all to do so. The AGFI adjusts the GFI
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for the number of degrees of freedom expended in estimating the model parameters. Indices less

than zero are treated as zero (indicating no model fit) and range up to one (indicating perfect

model fit). Many researchers have established .9 as an appropriate cutoff for determining

adequate model fit. More recently, however, researchers have specified the .92 or .95 levels as

more adequate cutoffs for GF1 & AGFI (Bollen & Long, 1993).

GFI and AGFI have the benefit of being more specific indices of fit than the chi-squared

statistic and they take degrees of freedom into account and eliminate some of the problems

inherent in the chi-squared statistic alone. Some research indicates that for GFI-based power

analyses, however, holding null and alternative values of GFI fixed leads to decreased power as

degrees of freedom increases. This can lead to more difficulty in detecting false null hypotheses.

This is not a problem for AGFI analyses, as power increases as degrees of freedom increase. But

for both indices, it is shown that it is problematic to establish consistently appropriate values for

null and alternative hypotheses about model fit (MacCullum & Hong, 1997). Thus, sample size

does impact detrimentally upon these indices in some instances.

NFI & NNFI

The normed fit index (NFI) was one of the earliest fit indices. Developed by Bentler and

Bonnett in 1980, NFI is an incremental fit index. This index assesses fit by comparing the tested

model with a more restricted null model in which all observed variables are assumed to be

uncorrelated. Given the shortcomings that they found in NFI, however, Bentler and Bonnet

(1980) proposed NNFI (the nonnormed fit index) as an alternative. NNFI involves the chi-

squared/degrees of freedom ratio rather than just the simple chi-squared value found in other

indices. NNFI is based on the Tucker-Lewis index (TLI, 1973), which was developed through

factor analysis. Unlike NFI, NNFI can exceed the 0 to 1 range. However, NFI and NNFI are both
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used in an absolute sense, where 1 equals a perfect model fit and 0 equals a complete lack of fit.

An index value of .9 or above has been conventionally regarded as indicating good to excellent

fit for both fit indices (Bentler & Bonnet, 1980).

NFI and NNFI are both valuable, because they are less affected by problems inherent in

the use of the absolute fit indices and chi-squared analyses. In subsequent research, however,

Bentler found that NFI did have some inherent weaknesses, most notably when sample sizes

were small (Bentler, 1993).

CFI

The comparative fit index (CFI) was created by Bentler as another alternative to NFI

(Bentler, 1993). Given that NFI has been shown to be an underestimate when small samples are

used, CFI was developed. CFI is another incremental fit index, and it is based on an earlier

Bentler statistic (BFI, the Bentler Fit Index) and McDonald and Marsh's (1990) relative

noncentrality index (RNI). CFI is often heralded as a better test of fit than BFI or RNI because it

does not exceed the 0 to 1 range. CFI values of greater than .9 are generally considered to

indicate acceptable levels of model fit.

Because CFI has an upper bound of 1, CFI has been shown in many instances to be a

slightly better (more efficient) index than RNI. As some authors have pointed out, however,

RNI's ability to exceed 1 may provide useful information when the sample size is small and the

researcher is examining nested models. Since CFI is constrained to the upper limit of 1, it can

fall short in uncovering the magnitude of difference between models under the aforementioned

conditions. It should be noted that many argue that almost all data is nested; not withstanding

these conditions, CFI is still one of the best incremental fit indices available due to its efficiency

(Goffin, 1993).
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RMSEA

The root mean square error of approximation (RMSEA) is one of the most recently

proposed tests of model fit (Steiger & Lind, 1980, as cited in Quintana & Maxwell, 1999).

Because the value of RMSEA is less affected by sample size than is chi-squared, the RMSEA,

like other alternative fit indices, has more descriptive value than chi-squared across various

sample sizes. Interpretation of RMSEA values is often considered according to the following: 0

= perfect fit; <.05 = close fit; .05 to .08 = fair fit; .08 to .10 = mediocre fit; >.10 = poor fit

(Byrne, 1998). RMSEA has been seen as a better indicator of fit than RMR (root mean square

residual), an earlier model fit index upon which RMSEA is roughly drawn.

RMSEA's greatest strength is its ability to outline a confidence interval around its

calculated value. Because the RMSEA's distribution values are known, a confidence interval

around the point estimate of the RMSEA can be constructed to indicate the level of its precision.

Using this confidence interval, evaluating the null hypothesis can be examined more precisely. In

using these confidence intervals, a null hypothesis (HO: not a close model fit) could be rejected

in favor of accepting the alternative (HA: close fit) if the entire range of the confidence interval

is less than .05. So, like the chi-squared statistic, it is possible to use RMSEA to evaluate the null

hypothesis that a model fits the data exactly. Unlike the chi-squared statistic, RMSEA is less

affected by sample size problems.

On the negative side, relatively little information is currently available on the

performance of RMSEA when data are nonnormal. What information that is available suggests

that RMSEA may perform less optimally when there are large sample sizes and relatively small

degrees of freedom (Quintana & Maxwell, 1999).
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The development of procedures for calculating confidence intervals and for testing null

hypotheses are important milestones in the development of SEM fit indices. While confidence

intervals are likely to be produced for other fit indices (some of which may prove to be better

able to test models with smaller degrees of freedom), RMSEA's value is in its originality.

Parsimony ratios

As mentioned above, the chi-square benchmark has been questioned by some researchers

as it will almost always achieve statistical significance as sample size and degrees of freedom

increase. Therefore, it has been suggested that the ratio of chi-square to degrees of freedom be

examined as an alternative realistic indicator of fit when sample sizes and/or degrees of freedom

are large (with a ratio of 5:1 to 2:1 considered to be within the acceptable range) (Tanaka, 1993).

Various parsimony-weighted fit indices have been proposed (of which the former is one). These

fit statistical weights, which range up to one and down to zero for just-identified models, are

multiplied times indices such as NFI (or x2), to take model complexity into account and reward

models that estimate fewer parameters, for the sake of parsimony.

Local Fit

Overall model fit may be poor, but there are other alternatives for determining the value

of a model. Specifically, local model fit focuses on the value of individual parameters in the

model. There are two ways of evaluating parameter estimates. The main test of parameter

significance is a z-test for estimated individual paths (which should be > 1.96 at the .05 level of

statistical significance). Additional support regarding local fit is indicated when significant paths

are found to be in the hypothesized direction, and the magnitude of the item loadings is greater

than .45 (parameter estimates or standardized regression weights) (Bentler & Wu, 1983;

Joreskog & Sorbom, 1989).

11



Fit Statistics 11

Modifications and Critical Ratios

There are several different ways to address model misspecification. Deleting statistically

nonsignificant parameters increases degrees of freedom and can result in a more parsimonious

model (simpler models produce better overall indices of fit). Modification indices (MI) are used

to determine if additional "tweaking" of the specified model would result in a better overall

model fit. MIs indicate if parameters that are "fixed" or constrained would be better off "freed"

or estimated by indicating a possible decrease in x2. Researchers sometime consider double digit

(10 or higher) Mk indicate parameters that would be best to free, however, this is not a stringent

rule and should be handled on a case to case basis. The Wald test is an example of a critical ratio

in use. The Wald Test (or z test as mentioned) is used to determine whether free parameters

should be fixed. The Wald Test tells researchers possible parameters that should not be estimated

(if absolute value of greater than 2 indicates a ripe parameter was correctly estimated).

Importantly, all model specifications searches are tentative and should not be considered as true

fits to the data. Original theory should drive decisions of model fit rather than post hoc model

"tweaking." However, model specification searches may lead to better specified models in the

future research

Summary

Researchers may be attracted to employ SEM because of its many benefits, yet they may

lack the awareness regarding theoretical background of the multiple fit statistics thus limiting

their decision about model fit. Researchers must determine whether they are interested in testing

the null hypothesis, absolute fit, or incremental fit. In addition, researchers should be aware of

the shortcomings of different fit statistics and how their model may lessen the applicability of

specific fit statistics. While numerical cut-offs have been provided for evaluating fit statistics it
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behooves researchers to investigate further and not blindly accept the criteria provided in

textbooks as the popularity of SEM does not appear to be waning. In most cases, researchers

should involve multiple criteria when evaluating their model fit.
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